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Market squid (Doryteuthis opalescens) constitute one of California’s largest fisheries by landings and are an essential prey item for numerous top
predators in the California Current ecosystem. However, extreme fluctuations in market squid abundance inhibit our ability to forecast local
recruitment. We generate a species distribution model for market squid with data from an annual survey to examine the mechanisms behind the
variability in their regional abundance and occurrence. Our results indicate juvenile market squid abundance was controlled by local recruitment
in connection with sea surface temperature and upwelling dynamics, with finer spatial variability connected to the extent of upwelling dominated
regions. Recent changes in these environmental factors also appear to contribute to the recent northward range expansion of market squid. Our
spatiotemporally explicit model estimates of juvenile market squid abundance predicted the occurrence and abundance of older market squid
in the diet of California sea lions (Zalophus californianus) and California fishery landings with as much skill as regional survey indices, suggesting
the models are robust. Collectively, we provide mechanisms driving market squid variability throughout California’s waters and an ecosystem
assessment of this economically and ecologically critical species.
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Introduction
Forage species are an important trophic link from bottom-up pro-
cesses to higher trophic levels and fisheries. Market squid (Dory-
teuthis opalescens) are important forage for fish, seabirds, and ma-

rine mammals throughout the California Current Ecosystem (CCE;
Lowry and Carretta, 1999; Becker et al., 2007; Glaser et al., 2014;
Warzybok et al., 2018) and often are California’s largest fishery by
landings (Heine, 2017). Market squid are a predominately shallow
water (∼10–100 m), coastal semi-pelagic species that aggregate in
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large spawning shoals and have been targeted by fisheries since 1863
(Fields et al., 1965). With the decline of Pacific sardine (Sardinops
sagax) biomass since 2010, the California wetfish fleet has shifted
from a multispecies fishery to one focused primarily on market
squid (Aguilera et al., 2015). Annual ex-vessel value of market squid
has exceeded $70 million several times from 2010 to 2020, making
it a species of great economic importance (Free et al., 2022). De-
spite the combined observations of high variability in abundance
and landings and its considerable commercial importance, market
squid ecology is relatively understudied. This is both a regional and
global management challenge, as high variability in catches, abun-
dance, and distribution, often assumed to be largely driven by envi-
ronmental factors, is typical of most of the world’s largest cephalo-
pod fisheries (Rodhouse et al., 2014; Arkhipkin et al., 2015; So-
brino et al., 2020; Moustahfid et al., 2021). The increasing reliance
of the commercial fishery on market squid, their role as forage for
predators such as California sea lions (Zalophus californianus), and
their changing distribution has resulted in a need to better under-
stand the causes of fluctuations in their abundance and distribution
throughout California’s waters (Chasco et al., 2022).

Market squid are unique among coastal pelagic forage species
of the southern and central CCE because they are extremely
short-lived and semelparous, living 6–9 months and undergo-
ing benthic egg deposition during spawning (Fields et al., 1965;
Butler et al., 1999; Macewicz et al., 2004). The species typi-
cally ranges from 25◦N to 50◦N within the CCE (Roper et al.,
1984), with most of the biomass of the species predominately oc-
curring between 32◦N and 38◦N (Zeidberg et al., 2006). How-
ever, the range of the species has fluctuated dramatically recently,
with an episodic expansion up to the Gulf of Alaska (Chasco et
al., 2022). The population structure of market squid along this
latitudinal gradient remains an open question, with the species
currently treated as a single population that spawns through-
out the year during appropriate environmental conditions (Re-
ichow and Smith, 2001). Recent genetic research supports this
consideration while also indicating that there is potential for
“micro-cohorts” (in which there are greater genetic similarities over
small temporal scales, e.g. 1–2 months) throughout the range of
market squid (Cheng et al., 2021).

Market squid abundance—and their corresponding prevalence
in predator diets and the magnitude of commercial landings—
exhibit a large degree of variability due to their short lifespan and
high sensitivity to environmental conditions (Jackson and Domeier,
2003, Lowry and Carretta, 1999; Dorval et al., 2013; Ralston et al.,
2018). Documented drivers of abundance and fishery landings in-
clude El Niño Southern Oscillation (ENSO) cycles influencing sur-
vival at the paralarval stage (Perretti and Sedarat, 2016), variabil-
ity in benthic egg deposition and survival (Zeidberg et al., 2011,
2012; Van Noord and Dorval, 2017), and prey availability (Ralston
et al., 2018). Understanding the effect of these combined environ-
mental drivers on squid recruitment has been of increasing interest
due to the recent range expansion of market squid to more north-
ern CCE areas (e.g. increased abundance off Oregon, periodic ob-
servations in Alaska; Burford et al., 2022; Chasco et al., 2022). In-
creasing fishing pressure has also coincided with increased vari-
ability of landings (Ralston et al., 2018). The leading predictor of
market squid variability has been temperature in the upper 20 m,
which appears to have contributed to the brief range expansion dur-
ing a marine heatwave (Chasco et al., 2022). However, temperature
alone is unable to explain the interannual variability in landings and
abundance of market squid within its core range of Monterey Bay

(∼37◦N) to the Southern California Bight (∼32◦N), of which the
latter has oceanographic dynamics generally distinct from the rest
of the CCE (Checkley and Barth, 2009). This has collectively re-
sulted in a need to synthesize the multiple known drivers of vari-
ability in market squid abundance and explore new hypotheses to
predict their range and abundance fluctuations.

Species distribution models (SDMs) can elucidate the relation-
ships between a species’ occurrence and abundance with environ-
mental conditions. SDMs have been used in multiple case studies
throughout the CCE to better understand fisheries catch anomalies
of swordfish Xiphias gladius (Brodie et al., 2018) and the essential
habitat of important prey species (Muhling et al., 2019; Cimino et
al., 2020). An advantage of SDMs is their ability to predict species
occurrence in areas and time periods that surveys miss, allowing
for refined estimates of species abundance despite uneven sam-
pling in space and time (Thorson et al., 2020; Elith and Leathwick,
2009; Guisan and Thuiller, 2005). However, most species distribu-
tion models do not incorporate indices of recruitment or mecha-
nisms driving recruitment variability despite the strong effects these
may have on both the probability of occurrence and the local abun-
dance of a species (Thorson et al., 2021). Incorporation of these
processes is essential for garnering a mechanistic understanding
of the drivers of a species’ distribution, abundance, and catchabil-
ity for fisheries and predators (Selden et al., 2020; Muhling et al.,
2020). Identifying these mechanisms can also allow models to bet-
ter perform in novel spatiotemporal domains which is essential for
a species with a shifting range and high sensitivity to environmental
conditions (Burford et al., 2022; Chasco et al., 2022).

The short life span and high fecundity of market squid lead to
little autocorrelation in local annual abundance indices (Ralston et
al., 2018; Santora et al., 2021) and notable “boom-bust” variability
throughout California coastal waters (Figure 1). While the South-
ern California Bight constitutes their core range—and the area of
greatest fishing intensity and landings—localized abundance and
landings of market squid in more northerly areas such as Monterey
and Half-Moon Bay can rival those to the south in certain years
(Ralston et al., 2018). However, the timing of these landings dif-
fers, with squid fishing in the regions north of the Southern Cali-
fornia Bight peaking in May through August, while southern Cal-
ifornia landings occur predominantly in October through January
(Free et al., 2022). Given this seasonal separation, the fishing sea-
son spans multiple cohorts (seasonal pulses of recruitment or pro-
ductivity) each year, resulting in a need to understand mechanisms
driving squid recruitment and abundance for each region and sea-
son (Cheng et al., 2021). Market squid also serve as critical forage
for California sea lions in the Southern California Bight, who con-
sume market squid at a greater frequency than almost any other
prey item (Lowry and Carretta, 1999; Lowry et al., 2022). California
sea lion populations have been recovering from historical exploita-
tion and culling since the 1970s (Laake et al., 2018), thus predation
pressure on market squid by sea lions (and likely other predators)
has been steadily increasing as well. Improved understanding of the
drivers of market squid abundance is thus a priority given their eco-
nomic and ecological value within the CCE.

Here, we use a long-term epipelagic micronekton survey
throughout California’s coastal waters in spring/summer to assess
the drivers of market squid abundance and distribution using a
combination of oceanographic influences on recruitment and con-
temporaneous oceanographic model estimates. Specifically, we hy-
pothesize that thermal conditions and upwelling dynamics during
the early life stages of market squid, including benthic egg depo-
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Figure 1. (a) Schematic diagram of the modelling method used in this work, with a recruitment and hurdle model generated based on
conditions before and during a spring/summer fishing-independent survey. Model estimates are subsequently validated against California sea
lion diets in the summer and fall and fishing landings in the summer. (b) Map of Rockfish Recruitment and Ecosystem Assessment Survey
stations with mean catch-per-unit-effort (CPUE; log-scale) for each fixed station location from  to  (exact sampling may occur within
∼ nm of these locations). Boundary used to compare with California sea lion diets in dashed line with the two rookeries used for diet
comparison (SNI = San Nicolas Island; SCI = San Clemente Island). The dotted line indicates the latitudinal boundary used to separate Region
 and Region  for fishery landings. Strata boundaries are indicated by thin solid lines (N = North, NC = North Central, C = Core, SC = South
Central, S = South).

sition, drive regional abundance of the juvenile squid observed in
the survey. We also hypothesize that the distribution and abun-
dance of market squid on smaller (∼10 km) scales is driven by both
their overall recruitment during spring/summer and local environ-
mental conditions such as temperature, chlorophyll-a, and bottom
depth. We evaluate and compare our model estimates of juvenile
market squid distribution to survey data not used in model train-
ing and to the distribution of larger size classes observed in sum-
mer market squid landings and the diet of California sea lions in
the summer and fall (Figure 1a). Our work provides an improved
understanding of market squid dynamics throughout the southern
and central CCE, serving as an integrated portfolio product that
combines inference from an SDM with assessment of predator and
fishery responses.

Material and methods
Survey data and market squid collections
We estimated the abundance and distribution of juvenile market
squid from collections by the National Oceanic and Atmospheric
Administration-National Marine Fisheries Service Rockfish Re-
cruitment and Ecosystem Assessment Survey (RREAS). The survey
began in 1983 as a “pre-recruit” survey of pelagic young-of-the-year
rockfish (and other groundfish) sampling from late April through
June to inform stock assessments with indices of incoming year

class strength and to provide insights for recruitment process stud-
ies (Ralston and Howard, 1995, Ralston et al., 2013). Sampling was
limited to a “core” region (36.5◦N–38.3◦N) between 1983 and 2004,
at which point sampling expanded to cover the majority of Cali-
fornia coastal waters, leading to the addition of three more strata:
“north central” (38.3◦N–40.2◦N), “south central” (34.5◦–36.5◦N),
and “south” (32.5◦N–34.5◦N). The final stratum, “north” (38.3◦N–
41.5◦N), was added in 2013. Fixed trawl sampling stations are typ-
ically sampled two to three times each year (hauls), resulting in 80
hauls per year on average from 1998 to 2003 (time period used for
“core” stations only), and a mean of 119 hauls per year for 2004–
2021 (except 2020 when sampling was reduced, see Santora et al.,
2021; Figure 1b; Supplementary Table S1).

Collections were made using a modified Cobb midwater trawl
with a 9.5 mm cod-end liner, fished at a 30 m headrope depth, cor-
responding to a swath of water column between a depth of 30 and
45 m (Ralston et al., 2013; Sakuma et al., 2016). All trawling was
conducted during hours of total darkness to minimize net avoid-
ance. The standard tow duration is 15 min, and nearly all micronek-
ton collected—including market squid—were reliably enumerated
starting in 1990 (Sakuma et al., 2016). This survey provides an in-
formative estimate of juvenile market squid abundance for indi-
viduals generally in the range of 20–50 mm mantle length in late
spring (Ralston et al., 2018; Supplementary Table S2). The mid-
water trawl, and the general design of the survey, followed that of
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Table 1. Hypotheses for each variable used in the formation of three squid models [recruitment, presence(P)/absence(A), and abundance].

Model Variable Units Hypothesis Reference

Recruitment Mean March–June SST ◦C Spawning habitat, growth, and survival Vidal et al., (); Zeidberg et al.,
, 

Mean March–June
meridional current

m s− Advection of individuals and upwelling Cimino et al. ()

Relaxation events Count Transport of primary production shoreward Supplementary Material
Intermediate upwelling

days
Num. Days Generation of primary production without

excessive turbulence
Cury and Roy ()

January, February, March
Oceanic Niño Index
(JFM ONI)

◦C Shifts in productivity and thermal dynamics
prior and during spawning

Perretti and Sederat ()

Mean March-June wind
stress curl

N m− Generation of “slow” upwelling and
production

Ryckazewski et al. ()

Spring transition index in
Biologically Effective
Upwelling Transport
Index (BEUTI)

Day of Year Initiation of regional net production altering
timing of growth

Jacox et al. (); Bograd et al.
()

Mean March-June
chlorophyll-a

mg m− Productivity during growth period affecting
growth and survival

Wheeler et al. ()

P/A and
Haul-specific
abundance

Recruitment estimate Mean
abundance

Drives overall abundance leading to variable
interannual occurrence

Suca et al. ()

Sea surface temperature
(SST)

◦C Thermal preference Muhling et al. (, ); Brodie
et al. ()

Std. Dev. of sea surface
temperature (SST_sd)

◦C Indicator of thermal fronts Muhling et al. (, ); Brodie
et al. ()

Sea surface height (SSH) m Indicator of divergence and convergence Muhling et al. (, ); Brodie
et al. ()

Std. Dev. of sea surface
height (SSH_sd)

m Indicator of fronts Muhling et al. (, ); Brodie
et al. ()

Total kinetic energy (TKE) m s− Preference for strength of current regimes Muhling et al. (, ); Brodie
et al. ()

Wind stress curl N m− Generates localized divergence and
convergence

Muhling et al. (, ); Brodie
et al. ()

Depth m Depth association Muhling et al. (, ); Brodie
et al. ()

Rugosity m Association with shifts in bathymetry such as
sea mounts

Muhling et al. (, ); Brodie
et al. ()

Coastal Upwelling
Transport Index (CUTI)

m s− Aggregation/disaggregation in response to
upwelling

Benoit-bird et al. (); Jacox et
al. ()

an earlier survey that was developed and designed to sample coastal
pelagic fishes as well as market squid (Mais, 1976, Show and Hill,
2021).

The timing of market squid spawning varies substantially in
space, with spawning in the Southern California Bight taking place
largely between October and May, while in central California,
spawning generally begins in April and ends in October (Butler et
al., 2003, CDFG, 2005). However, both spawning activity and fish-
ing catches are highly variable in both regions, and both can take
place at any time of the year (CDFW, 2005; Jackson and Domeier,
2003, Navarro et al., 2018). The survey thus captures a subset of the
spawning output of market squid for a given year, with this spawn-
ing output representing a varying proportion of total reproductive
output within a given year.

Model formation
Framework
We modelled the abundance and distribution of juvenile market
squid using a three-step modelling approach: a stratum-specific re-
cruitment model; a presence/absence model; and a haul-specific
abundance model (the latter two comprising a traditional hur-
dle model; Potts and Elith, 2006; Steel et al., 2013). Each compo-
nent is complementary while simultaneously representing differ-
ent processes of market squid dynamics: (1) recruitment preced-
ing the survey; (2) suitability of habitat allowing a squid to occupy
a location; and (3) localized aggregation behaviour that modulates
haul-specific catch observations. An advantage of the three-step ap-
proach is that model output for each step may have utility for dif-
ferent comparisons, including population-scale dynamics (recruit-
ment), predicted shifts in habitat occupancy (presence/absence),
and local catchability (haul-specific abundance; Suca et al., 2021).
The stratum-specific recruitment model serves to identify the
drivers of overall abundance of market squid in a survey stratum
linked to interannual variability in spawning and paralarval and ju-
venile growth/survival conditions leading up to and during the sur-
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vey. This component of the model serves to account for larger scale
environmental and biological processes that drive overall abun-
dance. This is particularly important for species with large abun-
dance fluctuations, such as coastal pelagic species (including semi-
pelagic species like market squid), that can exhibit a decoupling of
habitat suitability and occurrence (Suca et al., 2021). We note that
we call this model component “recruitment” to represent the abun-
dance of juvenile squid (typically, <50 mm dorsal mantle length;
Ralston et al., 2018) in the CCE during the time of the survey. This
is different from recruitment to the fishery, which nearly exclusively
targets spawning adults (120–150 mm dorsal mantle length) us-
ing purse or drum seine gear (Roper et al., 1984, Macewicz et al.,
2004). The presence/absence component of the framework iden-
tifies survey stations where shoals of market squid are likely to
occur, which is linked to the overall abundance of market squid
as well as oceanographic conditions in each region (Suca et al.,
2021). The haul-specific model predicts squid abundance at positive
stations using environmental drivers and overall abundance in the
stratum from the recruitment model, both of which are assumed
to influence squid shoaling dynamics. The combination of these
modelling components was ultimately used to predict juvenile mar-
ket squid abundance throughout California coastal waters. Esti-
mates of stratum-specific “recruitment” were used as predictors
within the presence–absence and haul-specific abundance models,
which combined represent a traditional hurdle model. Our analyses
spanned 1998–2021 as these years match the start of the SeaWiFS
satellite chlorophyll record.

Environmental predictors
Environmental predictors for squid models are derived from
a data-assimilative Regional Ocean Modeling System (ROMS)
built for the CCE (Moore et al., 2011; Neveu et al., 2016).
The model contains 42 vertical-terrain-following layers and
spans the range from 30◦N to 48◦N and shore to 140◦W at
0.1◦ horizontal resolution. Predictors vary by model compo-
nent and were constrained to surface variables (both hydro-
graphic and derived; Table 1) due to poor agreement among
subsurface model estimates and survey observations (Supplemen-
tary Methods; Supplementary Figure S1).

The RREAS collects in situ environmental data, which have been
used in prior assessments of juvenile rockfish abundance and mi-
cronekton biodiversity (Schroeder et al., 2014, 2019; Santora et al.,
2017). Extensive evaluation of RREAS collections has been made
with physical oceanographic variables from both in situ sampling
and ROMS, demonstrating the utility of the model for monitoring
the variability of micronekton (Schroeder et al., 2014). Therefore,
we used ROMS fields to incorporate additional variables and greater
spatiotemporal coverage to investigate squid distribution and abun-
dance. Daily ROMS environmental predictors were matched based
on sampling time and location (at the 0.1◦ by 0.1◦ spatial scale and
daily level) in the presence/absence and haul-specific abundance
models (Cimino et al., 2020). We considered a suite of predictors
that can collectively describe the mesoscale oceanography and in-
terannual variability of the CCE : SST, sea surface height, wind stress
curl, total kinetic energy, standard deviation (SD) of SST, and SD of
sea surface height (Table 1). The exception to the spatial matching
scale is for SD of sea surface height and SST, which were taken at
the 0.3◦ by 0.3◦ level, and wind stress curl, which was re-gridded to
a 0.5◦ by 0.5◦ grid to generate agreement between a ROMS histor-
ical re-analysis (1980–2010) and a ROMS near real-time product

(2011–present) (Brodie et al., 2018). These were combined with the
Garver–Siegel–Maritorena (GSM) model surface chlorophyll-a es-
timates from the GLOBcolour database using level 3 fields at 4 km
resolution (Fanton d’Anton et al., 2009). This model merges data
from various satellites when available and provides the best fit to in
situ chlorophyll-a observations (Maritorena and Siegel, 2005). We
also used static variables, including depth-related variables derived
from the ETOPO1 Global Relief Model: bottom depth and rugosity
(defined as SD of depth at a 0.3◦ by 0.3◦ scale; Table 1).

Derivations of daily upwelling dynamics were used as predictors,
namely metrics derived from the coastal upwelling transport in-
dex (CUTI) and the biologically effective upwelling transport in-
dex (BEUTI; Jacox et al., 2018). CUTI represents the balance of
wind-forced upwelling combined with the effects of geostrophic
flow along the coast, representing a more accurate index of coastal
upwelling relative to the Bakun Index (Jacox et al., 2018). In the
case of BEUTI, transport is scaled according to nitrogen upwelling
to represent the amount of nutrients available to primary produc-
ers (Jacox et al., 2018). Both CUTI and BEUTI are calculated in 1◦

latitudinal bins.
Three derivations of upwelling conditions were predictors in

the “recruitment” model. The first is the spring transition in-
dex, representing the day of the year in which integrated BEUTI
(starting from January 1) reaches its minimum and thus repre-
sents the day in which upwelling transitions to a positive regime
in terms of available nutrients (Bograd et al., 2009). The second
derivation is the number of upwelling “relaxation” events, where
a “relaxation” event occurs when a daily CUTI exceeding 1.0 m2

s−1 is followed by three or more consecutive days of CUTI val-
ues <0.5 m2 s−1. Relaxation events are proposed to serve as a
mechanism for enrichment, concentration, and retention of chloro-
phyll and other biogenic materials (Lasker, 1981; Bakun, 1996).
The third metric was defined as the proportion of days in which
CUTI values fall between 2.0 and 0.5 m2 s−1, representing the fre-
quency of days with “moderate” upwelling, which may allow for
sufficient primary productivity while not generating too much tur-
bulence or offshore transport such that production is disrupted or
pushed away from the coast (i.e. optimal environmental window
hypothesis; Cury and Roy, 1989).

Recruitment model
Recruitment was defined as stratum-specific mean log abundance
and was modelled as a Tweedie distributed variable. This value,
ln(catch +1), was deemed catch-per-unit-effort (CPUE) follow-
ing previous studies using these data (Santora et al., 2012; 2017).
We used generalized additive models (GAM) with thin-plate re-
gression splines using the mgcv package (Wood 2006) in R (ver-
sion 4.0.4), with each stratum/year combination treated as an ob-
servation. Predictor variables were restricted to mean values over
March–June as this corresponds to the likely time of spawning and
growth for squid collected in the survey (Ralston et al., 2018). Pre-
dictors included hydrographic variables (SST), upwelling indica-
tors (relaxation events, spring transition index, moderate upwelling
days), chlorophyll-a, and climate indices (e.g. Oceanic Niño in-
dex). Each predictor included corresponds to a potential hypoth-
esis for fluctuations in market squid recruitment and regional dis-
tribution throughout California’s coastal waters (Table 1). All pre-
dictors, except those for upwelling, were averaged from the shore
to the maximum distance from the shore sampled by the survey
(∼100 km from the nearest land, including the Channel Islands)
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 J. J. Suca et al.

and bounded by the maximum and minimum latitude sampled for
the given strata from March to June. This spatial extent corresponds
to that of the response variable (stratum-specific abundance) and
the spawning and growth window of squid collected in the survey.

A suite of eight candidate models representing alternative hy-
potheses were formed and each possible combination of predictors
within those models was fit using the dredge function within the
MuMIn R package (Table 2; Barton and Barton, 2015). The foun-
dation of the eight models originated from hypothesized mecha-
nisms driving squid recruitment based both on existing studies on
market squid or other coastal pelagic taxa. The differences in indi-
vidual models represent the possible combinations of non-collinear
predictor variables (r < 0.6). Region-specific by-smooths were in-
cluded for SST and wind stress curl . Primary productivity is likely
to respond differently to these drivers within the Southern Califor-
nia Bight versus the region north of Point Conception due to differ-
ences in hydrography across this boundary (Hickey, 1979; Parrish
et al., 1981; Checkley and Barth, 2009). Thus, regions for these by-
smooths were defined as north and south of Point Conception.

Each candidate “recruitment” model (Table 2) followed the fol-
lowing general formula:

CPU Ei j = tw
(
μi j, Pi j

)

log
(
CPU Ei j

)=α+ f1
(
Env. Pred.1i j

)+ f2
(
Env. Pred.2i j

)
. . . .

+ fn
(
Env. Pred.ni j

) + εi j

εi j ∼ Gamma (1, v) , (1)

where mean CPUE in a given stratum i and year j is treated as a vari-
able following a tweedie distribution with mean μ and a tweedie
power parameter P. fn represents a thin plate regression spline for
environmental predictor n. ε represents the Gamma noise parame-
ter with mean 1 and scale parameter v.

Models were ranked using the AIC, where models with a
�AIC <2 from the best fit model were considered to have sub-
stantial support (Burnham and Anderson 2002). Predictions from
models with a �AIC <2 were then averaged to account for uncer-
tainty in variable selection using the model.avg function within the
MuMIn R package (Barton and Barton, 2015).

Models were trained using 1998–2016 collections and tested on
collections from 2017 to 2021, representing ∼75/25 test-train split.
Strata with <5 hauls each year (3 of 80 strata/year combinations)
were excluded from model formation to avoid bias in variable selec-
tion through the inclusion of these under-sampled strata (Supple-
mentary Table S1). Predictions using the model ensemble were then
compared to strata-specific abundance estimates from 2017 to 2021
(“test” set) to assess the model’s out-of-sample predictive capability.
Model performance was evaluated through the R2 and root-mean-
square-error (RMSE) of the model’s predictions over 2017–2021.
Due to the low number of predictors and models used in the ensem-
ble, variable importance was evaluated through �R2 and �RMSE
for the training and test sets, as the SW would be unable to discern
variable importance (see below).

Presence/absence model
Juvenile market squid presence/absence (P/A) was modelled as a
binomially distributed variable using GAMs with thin-plate regres-
sion splines where individual hauls represent observations. Lunar
illumination was included as a predictor due to the nighttime sam-
pling scheme of the survey and the documented effects of lunar il-

lumination on the catchability of numerous species (Bos and Hua-
mano, 2012; Scales et al., 2017). Predictions from the recruitment
model were also included as predictors to account for variability
in overall abundance and drive presence. Splines for this predictor
were constrained to three knots as opposed to six for other environ-
mental predictors, to force a biologically plausible response.

Eight candidate models were formed, and each possible combi-
nation of predictors within those models was fit using the dredge
function within the MuMIn package (Barton and Barton, 2015;
1.46.0; Table 3). Sea surface height and SST (r = 0.64), total ki-
netic energy, and SD of sea surface height (r = 0.63), and CUTI and
wind stress curl (r = 0.69) were collinear. The eight different mod-
els thus represent each possible combination of non-collinear pre-
dictor variables. We used multi-model averaging for models whose
�AIC was <2 different from the “best” fit model.

Each candidate model for the P/A component (Table 2) followed
the following general formula:

PAi jk = binomial
(
ni jk, pi jk

)

logit
(
PAi jk

) = α + f1

(
̂CPU Ei j

)
+ f2

(
Env. Pred.1i jk

)

+ f3

(
Env. Pred.2i jk

)
. . . .

+ fn

(
Env. Pred.ni jk

)
, (2)

where PA (presence–absence) within stratum i, year j, and haul k
are treated as binomially distributed variables with a number of tri-
als (hauls) n, and a number of successes (presence) p. fn represents
a thin plate regression spline for environmental predictor n. ̂CPU E
represents the estimate of mean CPUE in stratum i and year j (“re-
cruitment”) from Equation (1) for the given year and stratum that
each haul occurs.

As with the recruitment models, presence/absence models were
trained using 1998–2016 collections and tested on collections from
2017 to 2021, representing ∼75/25 test-train split. Predictions using
this multimodel ensemble were then compared to presence/absence
data from 2017 to 2021 (“test” set) to assess the model’s out-of-
sample predictive capability. Model performance was evaluated
through receiver operating characteristic curves, namely the area
under the curve (AUC). AUC values range from 0 to 1, with val-
ues close to 1 indicating high model skill and values of 0.5 indi-
cating a model no better than random chance. The Northwest Fish-
eries Science Center Pre-Recruit Survey data (same mid-water trawl
and sampling schema) were also used as an evaluation set (dataset
description in supplement) to test the model’s predictive skill in a
novel spatial domain (NWFSC, 2022).

Variable importance was evaluated using Akaike weights
through the following formula:

wi = exp
[− 1

2 �i
]

∑n
i=1 exp

[− 1
2 �i

] , (3)

where �i represents the difference in AIC of a particular model
from the model with the lowest AIC. The sum of these values for
each variable was then calculated, resulting in the “sum of Akaike
weights” (SW hereafter), with values close to 1 indicating high vari-
able importance and those close to 0 representing low importance
(Giam and Olden, 2016).
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Table 2. Candidate models and minimum Akaike Information Criterion (AIC) within the combinations of each candidate model for the “recruit-
ment” model.

Model
Mean
SST

SST by
region

Mean
BEUTI

BEUTI by
region

BEUTI
STI

Relax.
events

Mean
chl-a

Mean
WSC

Mean WSC
by region

Int.
upwelling JFM ONI Min. AIC

 X X X X X X X .
 X X X X X X X .
 X X X X X X X .
 X X X X X X X ..
 X X X X X X X .
 X X X X X X X .
 X X X X X X X .
 X X X X X X X .

Xs indicate the variable was included in the given model. Abbreviations correspond with those presented in Table . Note minimum AIC may
correspond to a model fit using a subset of predictors within the given candidate model.

Table 3. Candidate models and minimum AIC within the combinations of each candidate model for the presence/absence and haul-specific
abundance components of the full hurdle-model.

Component Model Recruitment SSH SST SSH SD SST SD WSC Chl-a TKE CUTI Depth Rugosity
Lunar
illum. Lon, Lat Min. AIC

P/A  X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .

Abundance  X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .
 X X X X X X X X X X  .

Acronyms are defined in Table .

Haul-specific abundance model
Juvenile market squid haul-specific abundance in units of catch per
tow was modelled as a negative-binomially distributed variable with
GAMs using thin-plate regression splines. Individual tows where
market squid were caught represented observations (i.e. positive
stations only). Predictor variables and candidate models followed
exactly those of the presence/absence models (Table 1).

Each candidate model for the haul-specific abundance compo-
nent (Table 3) followed the following general formula:

Catchi jk = Neg. binomial
(
μi jk, θi jk

)

log
(
Catchi jk

) = α + f1

(
̂CPU Ei j

)
+ f2

(
Env. Pred.1i jk

)

+ f3
(
Env. Pred.2i jk

)
. . . .

+ fn

(
Env. Pred.ni jk

)
+ εi jk

εi jk ∼ Gamma (1, θ ) , (4)

where catch for haul k within stratum i during year j is treated as
a negative binomially distributed variable with a mean μ, and dis-
persion parameter θ . fn represents a thin plate regression spline for
environmental predictor n, along with error ε. ̂CPU E represents

the estimate of mean CPUE in stratum i and year j (“recruitment”)
from Equation (1) for the given year and stratum that each haul
occurs. ε represents the Gamma noise parameter with mean 1 and
dispersion parameter θ .

Models were trained, tested, and averaged using the same time
windows and thresholds as the presence/absence model. The Pre-
Recruit Survey data (for the Oregon and Washington areas) were
not used due to the limited number of stations with market squid
presence and a larger size distribution of squid captured in this sur-
vey relative to the RREAS collections (Supplementary Figure S2).
Model performance was evaluated through the R2 and RMSE of the
model’s predictions over 2017–2021 (data that was outside of the
time window used for model formation and selection).

We recognize that utilizing previous model estimates as data has
the potential to introduce bias, result in compounding errors that
may reduce model fit, and produce estimates whose statistical un-
certainty is under-estimated. To understand the sensitivity of our
model to using model estimates as if they were raw data, we com-
pared the model fit of both the presence/absence and hurdle mod-
els using “recruitment” point estimates to model fit using the upper
95% estimate, lower 5% estimate, point estimate + standard error,
and point estimate—standard error. For the presence/absence com-
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 J. J. Suca et al.

ponent, AUC was used as the metric of model fit. R2 and RMSE were
used as metrics of model fit for the hurdle model. We also assessed
the potential effects of random error in recruitment estimates on
model fit. We randomly sampled a value for the recruitment esti-
mate within the 95% CI for each stratum and year and recorded the
model’s AUC (P/A), R2, and RMSE. We repeated this process 100
times to generate 100 AUC, R2, and RMSE values. We report the
minimum, mean, and maximum metrics of model fit based on these
approximations of error to represent the presence/absence and hur-
dle model’s sensitivity to uncertainty in the recruitment estimate.

Trends with time
We computed the linear trend in habitat suitability (pres-
ence/absence model) and predicted abundance (log-scale; hurdle
model) for each 0.1◦ by 0.1◦ grid cell throughout California’s coastal
waters to identify regions of greatest change. Annual estimates were
taken for each grid cell from June to October, with 1998 represent-
ing the first year and 2021 the final year of model estimates. Indi-
vidual grid slopes were calculated with linear regression.

External data comparison and model evaluation
California sea lion diet comparison
Historical observations have shown that market squid form a major
component of California sea lion diets in the Southern California
Bight (Lowry and Carretta, 1999). A comparison of the model pre-
dictions with diet information was thus an opportunity to assess
whether the modelled market squid distribution and abundance
were reflected in predator foraging ecology. Hurdle model estimates
of CPUE [ln(catch + 1)] and mean probability of occurrence es-
timates were compared to observations of California Sea lion diet
from San Nicolas and San Clemente Island rookeries (SNI and SCI,
respectively). We use CPUE rather than expected catch due to the
large degree of variability in the observed catch of market squid, as
is common with small pelagic species (Suca et al., 2021). Diet esti-
mates come from a time series of scat collections from sea lion rook-
eries on each of these islands (Lowry et al., 1990, 1991, 1999, 2022).
Scat samples were collected with at least quarterly resolution from
each island from 1981 onward, representing prey consumed within
the 1–3 d prior (Orr and Harvey, 2001; Sweeney and Harvey, 2011).
Collections occurred primarily in areas occupied by females and
juveniles, though some male collections occurred. Observation of
prey in the scat included identification, enumeration, and measure-
ment of hard parts, specifically beaks in the case of market squid.

Hurdle model estimates of CPUE [ln(catch + 1)] and mean
probability of occurrence estimates within the feeding ranges of
each rookery were averaged over July–August and October, match-
ing the time window of summer [mean number of scats per year
for years used: SCI = 49.44 (31–61), SNI = 100.1(89–104)], and
fall [mean number of scats in years used: SCI = 49.25 (38–55),
SNI = 100.1(96–104)] scat collections, respectively (Figure 1). We
used contemporaneous environmental predictors during these time
windows for comparisons, while the “recruitment estimates” were
intra-annually static. We aimed to see if juvenile habitat was able
to reflect the habitat of subsequent adult squid, which the Cali-
fornia sea lions were feeding on. The feeding ranges for both is-
lands were bounded by 32.8–35◦N and waters east of 121.5◦W, cor-
responding with the predominant range of feeding sea lions from
these rookeries (Briscoe et al., 2018; Melin Pers. comm.). For each

rookery, mean hurdle model estimates of CPUE and mean probabil-
ity of occurrence were compared with the frequency of occurrence
of squid beaks in scats using beta regression in the betareg R pack-
age (version 4.0.4; Zeileis et al., 2016). The mean number of squid
per scat sample was also compared to mean hurdle model estimates
of CPUE and mean probability of occurrence through log-normal
regression, due to skew in the data.

A major advantage of SDMs is their ability to provide indices
of abundance in regions and times when survey data are not avail-
able. We therefore compared the ability of an index of abundance
for the southern stratum generated from station level catches of
market squid in the RREAS (Ralston et al., 2018) versus our hur-
dle model to predict the mean number of squid per scat sample,
and the frequency of occurrence of squid beaks. Briefly, the index
of abundance was generated using a delta-GLM with year and sta-
tion as the main effects and represents our best index of local squid
abundance to date (Ralston et al., 2018). This comparison allows us
to see if the model can provide a robust representation of market
squid abundance, and subsequent consumption by California sea
lions, when survey data are not available. Quality of fit to the Cal-
ifornia sea lion diet data was determined through R2 and p-values
(significance at α = 0.05).

Distribution of market squid landings
Market squid landings from the California Department of Fish
and Wildlife (CDFW) were summed from July to September
(quarter 3) for regions north and south of 35.67◦N (Figure
1b; Supplementary Table S3). Landings data were recorded
at both the port scale (where the squid are landed) and
at the fishing block scale (where the squid were caught).
We used landings data aggregated at the port-scale due to
confidentiality clauses leading to discrepancy in total landings
when looking at block level data.

Model predictions of abundance from the hurdle-model within
each CDFW region were averaged from July to September for each
year to compare with quarter 3 landings from 1998 to 2019, fol-
lowing the lag between the survey and expected landings used in
previous research (Ralston et al., 2018), and aiming to test the same
logic as using the comparison of model estimates with California
sea lion diet data. While total landings by region were utilized as
the response variable, model values were only considered for in-
shore fishing blocks that averaged >5 landings per year. We chose
these filters so as to not skew model estimates by including areas
that largely go unfished and to exclude areas in which landings are
reported but are too far offshore—in waters too deep—to plausi-
bly represent areas in which market squid fishing occurs (Supple-
mentary Figure S3). We also grouped CDFW’s Region 3 landings
into Region 2 as the majority of market squid caught in Region 3
is landed in Region 2, thus Region 3 blocks need to be included
to accurately recreate Region 2 port-scale landings (Supplementary
Figure S4).

Mean estimated market squid CPUE by CDFW region was com-
pared with the interannual variability in quarter 3 landings of each
region through log-normal linear models. We also analysed spatial
shifts in relative landings through a comparison of the proportion
of landings occurring in Region 1 compared to cumulative land-
ings with the equivalent fraction of model estimated CPUE within
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Table 4. Models used for averaging within each model component and measures of fit from the model ensembles.

Model stage Model AIC

Model
avg. train
R2 (AUC)

Model
avg. train

RMSE

Model avg.
test R2

(AUC)

Model
avg. test

RMSE

Recruitment Mean SST, relaxation events, JFM ONI . . . . .
Mean SST by region, relaxation events, JFM ONI .
Mean SST, relaxation events, JFM ONI, wind stress curl .

Presence/
Absence

Recruitment estimate, SSH, lunar illum., depth, wind stress curl, SST
sd, SSH sd, longitude × latitude

. . .

Recruitment estimate, chlorophyll-a, SSH, lunar illum., depth, wind
stress curl, SST sd, SSH sd, rugosity, longitude × latitude

.

Recruitment estimate, SSH, lunar illum., depth, wind stress curl, SST
sd, SSH sd, rugosity, longitude × latitude

.

Recruitment estimate, chlorophyll-a, SSH, lunar illum., depth, wind
stress curl, SST sd, SSH sd, longitude × latitude

.

Recruitment estimate, chlorophyll-a, SSH, lunar illum., depth, wind
stress curl, SST sd, longitude × latitude

.

Haul-specific
abundance

Recruitment estimate, chlorophyll-a, SSH, lunar illum., depth, wind
stress curl, SST sd, TKE, rugosity, longitude × latitude

. . . . .

Hurdle
model

P/A avg × haul-specific avg . . . .

R and RMSE used for recruitment and haul-specific abundance models. Area under receiver operating characteristic curve (AUC) used for
presence–absence models.

Table 5. Difference in model fit without each component predictor of the recruitment model for both the training set (–) and test set
(–).

Variable � R2 train � RMSE train � R2 test � RMSE test

Sea surface temperature . . . .
Relaxation events . . . .
Ocean Nino Index . . − . .
Wind stress curl . . . .

Region 1 through the following equation:

log
P

(
LandingsR1

)

1 − P
(
LandingsR1

) = βo + β1 ∗ P (Model CPU ER1 )

+ ε, (5)

where P(LandingsR1 ) represents the proportion of landings oc-
curring in Region 1, treated as a beta-distributed variable, and
P(Model CPU ER1 ) represents the proportion of modelled CPUE
within Region 1 compared to the full California coastline.

We also compared models fit to regional landings using indices of
squid abundance from the south stratum for Region 2, and a mean
of the north central and core strata for Region 1, with those fit from
hurdle model estimates to understand if our model is better able
to predict regional landings than survey indices alone. The quality
of fit to the regional landings data was determined through R2 and
p-values.

Results
Recruitment model
Three models, containing four total variables, resulted in �AIC <2
values. These models were averaged and used to generate pre-
dictions of recruitment (Table 4). Changes in R2 and RMSE val-
ues showed mean SST as the most important variable, followed
by the January–March Ocean Niño Index, relaxation events, and

mean wind stress curl (Table 5). The model fit to the training set
(R2 = 0.72; RMSE = 0.89) and test set (R2 = 0.78; RMSE = 0.78)
was strong (Figure 2).

Mean SST had a linear positive effect on stratum-specific
recruitment at values between 10 and 16◦C (Figure 3a).
High values of January–March ONI (strong El Niño events)
had a negative effect on stratum-specific recruitment, with
no pattern present for large negative January–March ONI
values (strong La Niña events; Figure 3b). The frequency of
upwelling relaxation events had a positive, linear effect on stratum-
specific recruitment, although the effect size was lower than that of
mean SST (Figure 3c). High levels of mean wind stress curl had a
negative effect on stratum-specific recruitment, though uncertainty
was high and the effect size was low (Figure 3d).

Presence/absence model
The presence/absence model ensemble was composed of eight com-
ponent models (Table 4). Variables included, in decreasing order
of importance by SW, were as follows: “recruitment” estimate, lon-
gitude and latitude tensor product, wind stress curl, sea surface
height, depth, lunar illumination, SD of SST, chlorophyll-a, rugos-
ity, and SD of sea surface height (Table 6). Model fit to training
and test data were both high, with AUC values of 0.887 and 0.867,
respectively. Model fit to the NWFSC Pre-Recruit Survey was fair
(AUC = 0.748).

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac186/6780182 by N

O
AA Seattle R

egional Library user on 09 N
ovem

ber 2022



 J. J. Suca et al.

Figure 2. Comparison of strata-specific abundance from the survey
(solid lines) and results from the recruitment model estimates
(dashed lines) through time for (a) north and north-central strata,
(b) core stratum, and (c) south and south-central strata. A vertical
dotted line indicates separation between training and test data sets.

Table 6. SW for each predictor within the presence/absence and haul-
specific abundance models.

Variable P/A SW Haul-specific SW

Recruitment  
Chlorophyll-a . 
Wind stress curl  
SSH  
SSH SD . NA
SST SD  
Depth  
Rugosity . 
TKE NA 
Lunar illum.  
Lon, Lat  

All variables other than chlorophyll-a, rugosity, and SD in sea
surface height were highly important (SW > 0.9). Recruitment es-
timates had a positive, log-linear effect on the probability of occur-
rence (Figure 4a). Wind stress curl had a positive relationship with
the probability of market squid occurrence (Figure 4b). Sea surface
height had a negative linear relationship with the probability of oc-
currence (Figure 4c). The probability of occurrence was highest at
shallow depths, with no observable effect at depths >500 m (Figure
4d). High values of lunar illumination (full moon) had a negative
effect on the probability of occurrence of market squid, indicating
decreased catchability (Figure 4e). The probability of market squid
occurrence peaked near intermediate values of SD of SST (Figure
4f).

Haul-specific abundance model
The haul-specific abundance model was a single model and not
an ensemble (no other models had a �AIC <2; Tables 4, 6). Vari-
ables included in this model are “recruitment” estimates, longitude
and latitude tensor products, lunar illumination, chlorophyll-a, sea
surface height, wind stress curl, rugosity, SD in SST, total kinetic
energy, and depth (Table 6). Model fit was poorer than recruit-
ment for both the training set (R2 = 0.324; RMSE = 2.141) and
the test set (R2 = 0.167; RMSE = 2.337). Combined hurdle esti-
mates (probability of occurrence × abundance estimates) fit the
training (R2 = 0.478; RMSE = 2.167) and test sets (R2 = 0.389;
RMSE = 2.409) similarly.

Recruitment estimates had a similar partial effect within the
abundance model to that of the presence/absence model, with a log-
linear relationship levelling off at ∼4 mean CPUE (Figure 5a). In-
creasing chlorophyll-a values had a positive effect on haul-specific
catch from ∼0 to 8 mg m−3, decreasing afterward (Figure 5b). Sea
surface height had a negative linear relationship with catch (Figure
5c). Catch was highest at shallow depths, with no observable ef-
fect at depths >500 m (Figure 5d). Lunar illumination showed a
decreasing effect on haul-specific catch at values >0.6 (Figure 5e).
Catch had a positive relationship with the SD of SST, wind stress
curl, and total kinetic energy (Figure 5f, g, and i). Catch had a bi-
modal positive relationship with rugosity around values of 300 and
800 m (Figure 5h).

Model fit for both the presence/absence model and the hur-
dle model was nearly insensitive to simulated error in the
recruitment estimate (Supplementary Table S4). The poorest
model fit occurred when using the upper 95% estimate of re-
cruitment as a predictor, with R2 declining to 0.41, RMSE
increasing to 3.01, and AUC only declining to 0.88. Model
fit metrics for randomly sampled error within recruitment
estimates generally produced model fit metrics close to the model
created with point estimates, with a mean (range) AUC of 0.87
(0.86–0.89), R2 of 0.43 (0.39–0.47), and RMSE of 2.39 (2.27–2.52;
Supplementary Table S4).

The spatial climatology of hurdle model predictions es-
timated high abundances of market squid throughout the
Southern California Bight and in coastal regions to the north,
such as Monterey Bay, with little to no predicted abun-
dance in offshore waters or northern coastal waters outside
of prominent bays (Figure 6a). Hurdle model estimates had
minimal average monthly variability in estimated abundance
(Supplementary Figure S5) but notable spatiotemporal variability
interannually, particularly from 2013 to 2017. Abundance anoma-
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Figure 3. GAM response curves for variables included in the recruitment model: (a) March–June SST, (b) January–March Oceanic Niño Index,
(c) March–June count of relaxation events, and (d) March–June mean wind stress curl.

lies peaked for much of the area in 2014 and reached a minimum
in 2016 (Figure 6b and f).

Market squid abundance and habitat suitability increased
through time throughout much of California’s coastal waters
(Figure 7). Central California and the offshore waters of southern
California had the greatest increase in both habitat suitability and
estimated abundance (Figure 7).

Comparison with California sea lion diet
Hurdle model estimates of market squid CPUE and mean proba-
bility of occurrence had significant, positive relationships with the
frequency of occurrence of market squid in the diet of California
sea lions from SNI in the summer and fall, and in the summer for
SCI (Table 7; Figure 8).

Both the hurdle model estimates of market squid CPUE and
mean probability of occurrence had significant positive relation-
ships with the mean number of squid per diet sample of California
sea lions for both San Nicolas Island and San Clemente Island in the
summer and San Nicolas Island in the fall (Table 7; Figure 8).

Comparisons of hurdle model estimates with survey indices in-
dicated that model estimates had stronger and more frequently sig-
nificant relationships with California sea lion diet metrics in five of
eight cases (two metrics × two seasons × two rookeries). Only the

frequency of occurrence of market squid in the diet of California
sea lions in the summer on San Nicolas Island, the mean number of
market squid in the summer on San Clemente Island, and the fre-
quency of occurrence of market squid in the fall on San Clemente
Island had stronger fits to survey data (Supplementary Table S5).

Comparison with California market squid landings
Region 1 landings for quarter 3 were significantly correlated with
the interannual variability in model estimated CPUE (R2 = 0.28,
p = 0.02; Figure 9a), and Region 2 (R2 = 0.25, p = 0.05; Figure 9b).
The years 2017 and 2018 represented anomalies in both compar-
isons despite good model fit to survey data in those years (Figure
2). Model estimates of squid CPUE outperformed the survey index
in predicting landings for Region 1 and Region 2, but differences
were slight (Supplementary Table S6). The proportion of landings
in Region 1 was significantly related to the proportion of model
estimated CPUE in Region 1 (Pseudo-R2 = 0.26, p < 0.01; Figure
9c; Table 8) for quarter 3.

Discussion
Our work identifies potential mechanisms for variability in mar-
ket squid abundance throughout California’s coastal waters in the
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 J. J. Suca et al.

Figure 4. GAM response curves for variables with high importance (SW >.) in the presence/absence model ensemble: (a) “recruitment”
estimate, (b) wind stress curl, (c) sea surface height, (d) depth, (e) lunar illumination, and (f) SD of SST.

summer and early fall. We evaluate these estimates with indepen-
dent data sources to confirm the utility of the model for estimat-
ing market squid abundance in unsampled regions and times. Im-
portantly, our model estimates can recreate regional fluctuations
in market squid abundance and the emergence of increased mar-

ket squid abundance in central and northern California follow-
ing the 2014–2016 marine heatwave. Our work thus provides po-
tential mechanisms behind this expansion beyond temperature—
specifically, variability in upwelling dynamics during the early life
stages of market squid and the availability of upwelling-influenced
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Figure 5. GAM response curves for variables included within the haul-specific abundance model: (a) “recruitment” estimate, (b) chlorophyll-a,
(c) sea surface height, (d) depth, (e) lunar illumination, (f) SD of SST, (g) wind stress curl, (h) rugosity, and (i) total kinetic energy.

Table 7. Fit of regressions of market squid model estimates of occurrence and abundance with the frequency of occurrence and mean number
of market squid in the scats of California sea lions from two rookeries in two seasons.

Rookery Season Response Predictor Model form Slope estimate Efron-pseudo-R2 p-value

San Nicolas Island Summer Freq. Occurr. Abundance Betaregression . . 0.040
Summer Freq. Occurr. Prob. Occurr. Betaregression . . 0.041
Summer Num. squid Abundance Log-normal . . <0.001
Summer Num. squid Prob. Occurr. Log-normal . . <0.001

Fall Freq. Occurr. Abundance Betaregression . . 0.006
Fall Freq. Occurr. Prob. Occurr. Betaregression . . 0.004
Fall Num. squid Abundance Log-normal . . 0.003
Fall Num. squid Prob. Occurr. Log-normal . . 0.002

San Clemente Island Summer Freq. Occurr. Abundance Betaregression . . 0.022
Summer Freq. Occurr. Prob. Occurr. Betaregression . . 0.017
Summer Num. squid Abundance Log-normal . . 0.011
Summer Num. squid Prob. Occurr. Log-normal . . 0.012

Fall Freq. Occurr. Abundance Betaregression . . .
Fall Freq. Occurr. Prob. Occurr. Betaregression . . .
Fall Num. squid Abundance Log-normal . . 0.011
Fall Num. squid Prob. Occurr. Log-normal . . 0.015

Bolded p-values indicate significance.
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 J. J. Suca et al.

Figure 6. Hurdle model estimates of log market squid abundance (a) averaged from  to  and anomaly from the climatology for years
preceding, during, and immediately after a marine heatwave, – (b–f).

Figure 7. Linear trend in probability of occurrence and log of CPUE of market squid from  to  for each .◦ by .◦ grid cell within
 km from land.
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Temperature and upwelling dynamics drive market squid distribution and abundance in the California Current 

Figure 8. Regressions between hurdle model estimates of squid abundance and frequency of occurrence of market squid in California sea lion
diet in the summer and fall for San Nicolas Island (a, e), San Clemente Island (c, g), and for mean number of prey in scats collected for summer
and fall for San Nicolas Island (b, f) and San Clemente Island (d, h). Solid lines indicate significant relationships (p < .), while dashed lines
indicate non-significant relationships.
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 J. J. Suca et al.

Table 8. Fit of regressions of market squid model estimates of abundance with the landings of market squid in Region  (central and northern
California), Region  (southern California), and the proportion of landings occurring in Region  for July–September.

Season Region Model form Efron-pseudo-R2 p-value

July–Sept  Log-normal . 0.023
 Log-normal . 0.047

Proportion Betaregression . 0.003

water during the summer. These results suggest variability in
spawning and survival of juveniles have much stronger effects on
overall distribution and abundance than small spatial scale vari-
ability in habitat suitability. Our inclusion of recruitment-related
drivers beyond simply temperature in a species distribution mod-
elling framework has the potential to be utilized for other short-
lived, highly fecund species that exhibit large fluctuations in distri-
bution and abundance.

Environmental drivers of market squid distribution

One outcome of this work is an improved understanding of the
drivers of market squid abundance and distribution. Our results
corroborate previous studies that suggest temperature plays a major
role in determining the location of market squid and their spawn-
ing environment throughout the CCE and Gulf of Alaska (Burford
et al., 2022; Chasco et al., 2022), as SST explained the most vari-
ance within our “recruitment” model. Fluctuations in temperature,
relaxation events, and wind stress curl (and subsequent “slow up-
welling”; Rykaczewski and Checkley, 2008), may have allowed for
market squid abundance to shift northward, particularly allowing
for a pocket of high market squid abundance in the “core” stratum
near Monterey Bay in 2015 (Figures 6 and 7). This is corroborated
by observations within regions of upwelling-influenced waters and
the relatively high abundance and diversity of many forage species
in this region during the 2014–2016 marine heatwave (Sakuma
et al., 2016, Santora et al., 2017). Given that the most important
predictors in the presence/absence model and haul-specific abun-
dance models were those that correspond with typical upwelling-
influenced water (low SSH, high wind stress curl, and moderate
chlorophyll), these localized regions of compressed upwelling habi-
tat may serve as essential habitat for market squid during times of
otherwise high SST, such as those observed during the marine heat-
wave (i.e. thermal refugia; Santora et al., 2020). The higher occur-
rence and catch at elevated SD of SST and total kinetic energy fur-
ther indicate that upwelling associated frontal features may specifi-
cally represent the habitat occupied by juvenile squid.

While our recruitment model attempts to elucidate mechanisms
beyond broad-scale climate indices, we were unable to isolate a
group of predictors that could replace the Oceanic Niño Index. Pre-
vious work has indicated that variability in this index is an impor-
tant correlate of squid abundance and distribution throughout Cal-
ifornia’s waters, including leading to notable declines in landings
after strong El Niño events (Zeidberg et al., 2006). El Niño events
have also been associated with lower growth rates and smaller size at
age (Jackson and Dormier, 2003), decreases in paralarvae survival
(Koslow and Allen, 2011, Perretti and Sedarat, 2016), and decreased
market squid in the diet of California sea lions (Lowry and Car-
retta, 1999). Our recruitment model corroborates these findings,
as Ocean Niño Index values only begin to have a notable negative

effect during strong El Niño conditions, with little observed effect
during La Niña. This is likely due to the positive effects of La Niña
patterns being captured in other aspects of the models, particularly
upwelling dynamics such as relaxation events and wind stress curl.
However, the exact mechanisms behind the pattern of notable de-
clines in abundance during strong El Niño conditions remain un-
clear. We used the Oceanic Niño Index from January to March as
this value was not collinear with the March–June average SST. This
time window corresponds to the Oceanic Niño Index during the
adult stages of the parents of market squid collected in the RREAS.
One possibility is the role of strong El Niño events in reducing the
availability of productive, upwelling-influenced waters. Our collec-
tive model indicates that upwelling-influenced water is an impor-
tant habitat for juvenile market squid, even if they can have large
recruitment events during periods of relatively warm SST. Given
that El Niño events are manifested both by generally warm off-
shore conditions and coastally trapped Kelvin waves, it may not
be temperature specifically that is deleterious to market squid, as
their range includes regions such as Baja California where surface
conditions can exceed 30◦C (Fields, 1965). Coastally trapped Kelvin
waves generate positive sea surface height anomalies, leading to de-
creased upwelling and productivity as they move northward along
the California coast (Amaya et al., 2022). Given that these Kelvin
waves are frequent in the months following strong El Niño events
(∼2–3 month lag; Enfield, 1989 Myers et al., 1998; Amaya et al.,
2022), it is possible that these events can result in frequent or large
enough coastally trapped Kelvin waves to effectively remove avail-
able market squid habitat during the juvenile or adult life stages
throughout the California coast, resulting in a decrease in subse-
quent spawning, recruitment, and landings. This hypothesis war-
rants further exploration given the need to move beyond climate
indices in our understanding of species distribution and recruit-
ment. However, other possibilities remain, including trophic shifts
driven by El Niño events. Declines in productivity may lead to de-
creased zooplankton abundance for adult market squid, resulting in
decreased growth, parental condition, and spawning output (Jack-
son and Domeier, 2003; Zeidberg et al., 2006). The trophic effects
of El Niño events may also be less direct, such as non-linear shifts in
food chain length and trophic efficiency (Ruiz-Cooley et al., 2017).
However, it is important to note that the role of density-dependence
in market squid recruitment is not well understood, thus decreases
in spawning habitat may not necessarily lead to decreases in recruit-
ment. Indeed, research on the cephalopod Octopus vulgaris indi-
cates strong density-dependence in the stock-recruitment relation-
ship can lead to boom–bust cycles from even small environmentally
driven or fishing induced disturbances (Roa-Ureta et al., 2021). Ad-
ditional research is needed to identify which of these hypotheses
have support and how they may interact to manifest in the delete-
rious effect of El Niño events on market squid abundance.
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Figure 9. Regression of model estimated log CPUE compared to
landings in July–September for Region  north of Pt. Conception (a),
Region  south of Pt. Conception (b), and the proportion of overall
landings in Region  (c).

Predicting adult squid abundance
In addition to providing possible mechanisms behind market squid
abundance and distribution, our model was able to predict Califor-
nia sea lion diet from two rookeries in two seasons in the South-
ern California Bight and commercial squid landings in central and
northern California, suggesting there is potential for the model to
serve as an indicator of future market squid abundance in multiple
regions of the California Current. This is particularly important for
years when survey collections in this region are reduced or missed
altogether, as has happened multiple times throughout the span of
the RREAS (Santora et al., 2021).

Implications for California sea lions
Previous research indicates market squid are one of the most fre-
quently consumed prey items for California sea lions in the South-
ern California Bight in both summer and fall (Lowry and Caretta,
1999; Lowry et al., 2022). Thus, moving towards a mechanis-
tic understanding of squid recruitment and abundance is rele-
vant to ecosystem-based fisheries management that accounts for
changing ocean conditions and balances commercial fishing with
the needs of these central place foragers and other predators,
including both protected and fished species. California sea li-
ons have undergone unusual mortality events due to factors such
as malnourishment and domoic acid poisoning throughout the
past few decades during their long-term recovery, particularly in
1998 and 2013–2016. The 1998 observation matches well with the
overall low estimated squid abundance throughout the Southern
California Bight during this time and corresponds with a strong El
Niño event (Greig et al., 2005). However, the more recent unusual
mortality event (UME) occurred during a window of high sum-
mertime market squid abundance, especially during the first two
years when the model, survey indices, and sea lion diet observa-
tions all indicate large numbers of market squid were present in the
Southern California Bight (Laake et al., 2018; Ralston et al., 2018).
Sea lion diet data from the southern Channel Islands for winter of
2014/15 indicate that squid availability plummeted in this season,
when their typical diet is most dominated by squid, potentially con-
tributing to the UME (data for 2015/16 winter are not available)
(Lowry et al., 2022). This trophically impactful seasonal shift within
a multi-year marine heatwave underscores the importance of a year-
round perspective on forage dynamics, as afforded by the quarterly
southern Channel Islands sea lion diet time series. Market squid
abundance alone may be unable to prevent malnutrition in juvenile
sea lions—the lipid content of market squid is lower than other for-
age taxa such as northern anchovy (Engraulis mordax) and Pacific
sardine (Sardinops sagax), so fluctuations in the latter may play an
important role in successful reproduction and recruitment of Cal-
ifornia sea lions (Litz et al., 2010; McClatchie et al., 2016; Burford
et al., 2022). Northern anchovy abundance was at very low levels
during the 2010 through 2014/15 time period (Santora et al., 2020),
yet anchovy in sea lion diet from the Southern California Bight in-
creased to levels not seen since the early 2000s during the summer
of 2015 (Lowry et al., 2022). Variation in caloric density within prey
species might also play an important role in the population dynam-
ics of predators such as California sea lions (von Biela et al., 2019).
A more complete understanding of the pelagic forage dynamics and
trophic ecology of California sea lions and other predators is needed
for adequate ecosystem-based management of fisheries that consid-
ers their requirements.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsac186/6780182 by N

O
AA Seattle R

egional Library user on 09 N
ovem

ber 2022



 J. J. Suca et al.

Comparison of model estimates with market squid
landings
Understanding the mechanisms of squid abundance and distribu-
tion throughout the central and southern CCE has important im-
plications for the market squid fishery, which has become both in-
creasingly variable and valuable in recent years (Heine et al., 2017;
Chasco et al., 2022). Landings have increased in northern California
current waters over the past decade, corresponding to the range ex-
pansion of market squid observed after the 2014–2016 marine heat-
wave (Burford et al., 2022; Chasco et al., 2022). Our model estimates
of squid abundance correlated with landings throughout California,
indicating that the dependencies within the model can help provide
context for both the shift in market squid distribution and its fish-
ery. However, our model is restricted to the summer and early fall in
terms of its ability to predict adult abundance and is not representa-
tive of the full market squid population of California, or even the en-
tire spring spawning population. We are unable to produce reliable
estimates of late fall and winter squid abundance when squid can
be both ecologically (Lowry et al., 2022) and commercially (Free et
al., 2022) important. Estimating squid abundance throughout the
year will be essential in improving our understanding of the rela-
tionship between fishery and trophic dynamics and squid abun-
dance. This will also allow for year-round estimates of spawning
stock biomass. Acquiring estimates of seasonal to monthly biomass
of market squid would allow for an exploration of potential stock-
recruitment relationships, further improving our understanding of
and ability to manage this species. The quarterly sea lion diet data
from the southern Channel Islands might provide a useful long-
term index for this purpose for the Southern California Bight.

The lack of complete seasonal model predictions specifically lim-
its our capacity to understand market squid fishery dynamics in
Region 2, the Southern California Bight, as the majority of annual
landings in this region occur in the fall and winter (quarters 1 and
4). This is likely the primary reason for the poorer match between
model estimates and landings for Region 2 compared to Region 1,
as the fishery in this region is unlikely to be as driven by availability
during the summer as in Region 1, where the primary fishing sea-
son overlaps with our model’s seasonal prediction window (Ralston
et al., 2018). Survey indices also fit poorly to landings for Region 2,
emphasizing the need for the development of models that can be
expanded to incorporate all seasons to understand the population
dynamics of the species and the fishery.

Considerations for future research
Future modelling efforts need data that encompasses the full set
of environmental conditions experienced by market squid to en-
sure they are constrained appropriately. A limitation in our study is
that the response curve for market squid recruitment and tempera-
ture in our model is linear, indicating that increasingly warm tem-
peratures should increase recruitment. However, this is unlikely to
be true for market squid in the fall and is an improbable response
shape for most species, as concave thermal niches are nearly univer-
sal (Magnuson et al., 1979; Stuart-Smith et al., 2017). The inability
of our model to constrain the upper limit of market squid’s response
to SST can serve as an additional warning for extrapolating species
distribution models beyond the parameter space in which they were
constructed (Conn et al., 2015; Muhling et al., 2020). Temperature
is of particular importance as it is the most important predictor in
our recruitment model, and a predictor which we know is unlikely

to have a linear response across the full range of conditions expe-
rienced by market squid. Climate change projections for the CCE
show temperatures warming beyond the ranges of historical vari-
ability (King et al., 2011; Pozo Buil et al., 2021). The lack of an upper
temperature constraint not only limits the capacity for the model to
be used reliably in climate change scenarios but may also limit its
utility in expanding to warmer months of the year that may nat-
urally exceed the realized thermal niche of market squid. Indeed,
the paralarval abundance of market squid has been shown to de-
crease in temperatures exceeding those used in our study, corrob-
orating this concern (Van Noord and Dorval, 2017). Responses to
upwelling-related phenomena may also have limits, but it is plausi-
ble that increasing areas of upwelled water and prey availability may
lead to continually increased recruitment. Therefore, in addition to
ensuring adequate sampling across a species’ thermal niche, consid-
ering which predictors to include in predictive models and whether
any should be shape-constrained is important to ensure model pre-
dictions are able to provide useful and realistic results for both sea-
sonal and climate scale forecasting. Models like ours are effective
within the parameter space in which they were constructed but will
need updating and refitting as climate and phenological shifts con-
tinue in the coming decades.

Conclusion
Overall, our results provide new insights into the drivers of
market squid abundance and distribution throughout Cal-
ifornia’s coastal waters. We both corroborate a northward
movement of market squid habitat during and following the
2014–2016 marine heatwave and emphasize the importance of
upwelled waters for market squid habitat. The availability of juve-
nile habitat as we described here was able to explain variability in
commercial fishing landings and the diet of California sea lions,
indicating that these mechanisms are likely consistent for the
adult market squid that these groups target. Our results can pro-
vide resource managers with valuable information on bottom-up
mechanisms that drive fluctuations in market squid abundance
throughout the southern CCE from late spring through early fall.
Future work, including samples spanning the full thermal niche of
market squid, is needed to refine the mechanisms described here.
It will ultimately be necessary to develop year-round estimates
of squid abundance and to project habitat suitability and abun-
dance of market squid into the future. Doing so will provide an
opportunity to ensure continued sustainable management of this
species to support economically important fisheries and multiple
top predators in the CCE.
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